Abstract
Abstract
The star formation rate density (SFRD) history of the universe is well constrained up to redshift z ∼ 2. At earlier cosmic epochs, the picture has been largely inferred from UV-selected galaxies (e.g., Lyman-break galaxies; LBGs). However, the inferred star formation rates of LBGs strongly depend on the assumed dust extinction correction, which is not well constrained at high z, while observations in the radio domain are not affected by this issue. In this work we measure the SFRD from a 1.4 GHz selected sample of ∼600 galaxies in the GOODS-N field up to redshift ∼3.5. We take into account the contribution of active galactic nuclei from the infrared-radio correlation. We measure the radio luminosity function, fitted with a modified Schechter function, and derive the SFRD. The cosmic SFRD shows an increase up to z ∼ 2 and then an almost flat plateau up to z ∼ 3.5. Our SFRD is in agreement with those from other far-IR/radio surveys and a factor 2 higher than those from LBG samples. We also estimate that galaxies lacking a counterpart in the HST/WFC3 H-band (H-dark) make up ∼25% of the ϕ-integrated SFRD relative to the full sample at z ∼ 3.2, and up to 58% relative to LBG samples.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献