BST1047+1156: A (Failing) Ultradiffuse Tidal Dwarf in the Leo I Group

Author:

Mihos J. ChristopherORCID,Durrell Patrick R.ORCID,Watkins Aaron E.ORCID,McGaugh Stacy S.ORCID,Feldmeier JohnORCID

Abstract

Abstract We use deep Hubble Space Telescope imaging to study the resolved stellar populations in BST1047+1156, a gas-rich, ultradiffuse dwarf galaxy found in the intragroup environment of the Leo I galaxy group. While our imaging reaches approximately two magnitudes below the tip of the red giant branch at the Leo I distance of 11 Mpc, we find no evidence for an old red giant sequence that would signal an extended star formation history for the object. Instead, we clearly detect the red and blue helium-burning sequences of its stellar populations, as well as the fainter blue main sequence, all indicative of a recent burst of star formation having taken place over the past 50–250 Myr. Comparing to isochrones for young metal-poor stellar populations, we infer this post-starburst population to be moderately metal-poor, with metallicity [M/H] in the range −1 to −1.5. The combination of a young, moderately metal-poor post starburst population and no old stars motivates a scenario in which BST1047 was recently formed during a weak burst of star formation in gas that was tidally stripped from the outskirts of the neighboring massive spiral M96. BST1047's extremely diffuse nature, lack of ongoing star formation, and disturbed H i morphology all argue that it is a transitory object, a “failing tidal dwarf” in the process of being disrupted by interactions within the Leo I group. Finally, in the environment surrounding BST1047, our imaging also reveals the old, metal-poor ([M/H] = − 1.3 ± 0.2) stellar halo of M96 at a projected radius of 50 kpc.

Funder

Space Telescope Science Institute

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3