Abstract
Abstract
We report on the pulse-to-pulse energy distribution and longitude-resolved modulation properties of PSR J1631+1252 discovered by the Five-hundred-meter Aperture Spherical radio Telescope. Our analysis made use of the data acquired at 1250 MHz from the follow-up timing observations that lasted over a year. PSR J1631+1252 has a rotational period of ∼0.310 s, and a dispersion measure of ∼32.73 pc cm−3. The energy distribution is well described by a lognormal distribution, the parameters of which do not vary with time. We show that large modulation occurs across the bridge emission of the pulse profile, with sporadic bright bursts at the leading emission region. The fluctuation spectral analysis reveals the existence of subpulse drifting in the leading component with vertical spacing between the drift bands of 3.28 ± 0.08 pulse periods between consecutive drift bands. Possible physical mechanisms for subpulse drifting are discussed.
Funder
Chinese National Foundation
National Natural Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献