Rotational Components of the Sun’s Mean Field

Author:

Sheeley Neil R.ORCID

Abstract

Abstract This paper uses wavelet transforms to look for the rotational frequencies of the Sun’s mean line-of-sight magnetic field. For a sufficiently high wavelet frequency, the spectra of the dipole, quadrupole, and hexapole field components each show a time-dependent fine structure with periods in the range of 26.5–30 days and their harmonics. These maps confirm that a large enhancement of power at 30 days occurred in the dipole field during 1989–1990, as recorded previously using Fourier techniques. In addition, during some years the maps show power at 26.5 days (or its harmonics), which is clearly distinguishable from the rotation period of 26.9–27.0 days at the Sun’s equator. In at least one case, the 26.5-day period was a wave phenomenon caused by the systematic eruption of active regions at progressively more western locations in the Carrington coordinate system, as if the flux were emerging from a fixed longitude in a faster-rotating subsurface layer. Based on previous studies of the mean field, I conclude that the enhanced wavelet patterns in this paper are regions where magnetic flux is emerging in configurations that strengthen the Sun’s horizontal dipole, quadrupole, and hexapole fields, and (in the case of the more slowly rotating patterns) where this flux is being transported to midlatitudes whose rotation periods are in the range of 28–30 days.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3