Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow

Author:

Ajello M.ORCID,Arimoto M.ORCID,Axelsson M.ORCID,Baldini L.,Barbiellini G.,Bastieri D.,Bellazzini R.,Berretta A.,Bissaldi E.,Blandford R. D.,Bonino R.,Bottacini E.,Bregeon J.,Bruel P.,Buehler R.,Burns E.,Buson S.,Cameron R. A.,Caputo R.,Caraveo P. A.,Cavazzuti E.,Chen S.,Chiaro G.,Ciprini S.,Cohen-Tanugi J.,Costantin D.,Cutini S.,D’Ammando F.ORCID,DeKlotz M.,Torre Luque P. de la,Palma F. de,Desai A.,Lalla N. Di,Venere L. Di,Fana Dirirsa F.,Fegan S. J.,Franckowiak A.ORCID,Fukazawa Y.,Funk S.,Fusco P.,Gargano F.,Gasparrini D.,Giglietto N.,Gill R.,Giordano F.,Giroletti M.,Granot J.ORCID,Green D.,Grenier I. A.,Grondin M.-H.,Guiriec S.,Hays E.,Horan D.,Jóhannesson G.,Kocevski D.,Kovac’evic’ M.,Kuss M.ORCID,Larsson S.ORCID,Latronico L.,Lemoine-Goumard M.,Li J.,Liodakis I.,Longo F.ORCID,Loparco F.,Lovellette M. N.,Lubrano P.,Maldera S.ORCID,Malyshev D.,Manfreda A.,Martí-Devesa G.,Mazziotta M. N.,McEnery J. E.,Mereu I.,Meyer M.,Michelson P. F.,Mitthumsiri W.,Mizuno T.ORCID,Monzani M. E.,Moretti E.,Morselli A.ORCID,Moskalenko I. V.ORCID,Negro M.,Nuss E.,Omodei N.,Orienti M.,Orlando E.,Palatiello M.,Paliya V. S.ORCID,Paneque D.,Pei Z.,Persic M.,Pesce-Rollins M.,Petrosian V.,Piron F.,Poon H.,Porter T. A.,Principe G.,Racusin J. L.ORCID,Rainò S.,Rando R.,Rani B.,Razzano M.,Razzaque S.,Reimer A.,Reimer O.,Ryde F.,Saz Parkinson P. M.,Serini D.,Sgrò C.,Siskind E. J.,Spandre G.,Spinelli P.,Tajima H.,Takagi K.,Takahashi M. N.,Tak D.,Thayer J. B.,Thompson D. J.,Torres D. F.ORCID,Troja E.ORCID,Valverde J.,Klaveren B. Van,Wood K.,Yassine M.,Zaharijas G.,Mailyan B.,Bhat P. N.,Briggs M. S.,Cleveland W.,Giles M.,Goldstein A.,Hui M.ORCID,Malacaria ChristianORCID,Preece R.,Roberts O. J.ORCID,Veres P.,Wilson-Hodge C.,Kienlin A. von,Cenko S. B.ORCID,O’Brien P.,Beardmore A. P.,Lien A.,Osborne J. P.,Tohuvavohu A.,D’Elia V.,D’Aì A.,Perri M.,Gropp J.,Klingler N.ORCID,Capalbi M.,Tagliaferri G.ORCID,Stamatikos M.,De Pasquale M.

Abstract

Abstract We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early-time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy-loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3