Resolving the Fastest Ejecta from Binary Neutron Star Mergers: Implications for Electromagnetic Counterparts

Author:

Dean ColemanORCID,Fernández RodrigoORCID,Metzger Brian D.ORCID

Abstract

Abstract We examine the effect of spatial resolution on initial mass ejection in grid-based hydrodynamic simulations of binary neutron star mergers. The subset of the dynamical ejecta with velocities greater than ∼0.6c can generate an ultraviolet precursor to the kilonova on approximately hour timescales and contribute to a years long nonthermal afterglow. Previous work has found differing amounts of this fast ejecta, by one to two orders of magnitude, when using particle-based or grid-based hydrodynamic methods. Here, we carry out a numerical experiment that models the merger as an axisymmetric collision in a corotating frame, accounting for Newtonian self-gravity, inertial forces, and gravitational wave losses. The lower computational cost allows us to reach spatial resolutions as high as 4 m, or ∼3 × 10−4 of the stellar radius. We find that fast ejecta production converges to within 10% for a cell size of 20 m. This suggests that fast ejecta quantities found in existing grid-based merger simulations are unlikely to increase to the level needed to match particle-based results upon further resolution increases. The resulting neutron-powered precursors are in principle detectable out to distances ≲200 Mpc with upcoming facilities.We also find that head-on collisions at the freefall speed, relevant for eccentric mergers, yield fast and slow ejecta quantities of order 10−2 M , with a kilonova signature distinct from that of quasi-circular mergers.

Funder

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3