Near-infrared Extragalactic Background Light Fluctuations on Nonlinear Scales

Author:

Cheng Yun-TingORCID,Bock James J.

Abstract

Abstract Several fluctuation studies on the near-infrared extragalactic background light (EBL) find an excess power at tens of arcminute scales ( ∼ 103). Emission from the intra-halo light (IHL) has been proposed as a possible explanation for the excess signal. In this work, we investigate the emission from the integrated galaxy light (IGL) and IHL in the power spectrum of EBL fluctuations using the simulated galaxy catalog MICECAT. We find that at ∼ 103, the one-halo clustering from satellite galaxies has comparable power to the two-halo term in the IGL power spectrum. In some previous EBL analyses, the IGL model assumed a small one-halo clustering signal, which may result in overestimating the IHL contribution to the EBL. We also investigate the dependence of the IGL+IHL power spectrum on the IHL distribution as a function of redshift and halo mass, and the spatial profile within the halo. Our forecast suggests that the upcoming SPHEREx deep field survey can distinguish different IHL models considered in this work with high significance. Finally, we quantify the bias in the power spectrum from the correlation of the mask and the signal, which has not been accounted for in previous analyses.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-redshift supermassive black holes from tiny black hole explosions;Physical Review D;2024-06-10

2. Primordial black holes as near-infrared background sources;Monthly Notices of the Royal Astronomical Society;2023-11-07

3. Probing bursty star formation by cross-correlating extragalactic background light and galaxy surveys;Monthly Notices of the Royal Astronomical Society;2023-07-04

4. Data-driven Cosmology from Three-dimensional Light Cones;The Astrophysical Journal;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3