Dynamics of Langmuir Wave Spectra in Randomly Inhomogeneous Solar Wind Plasmas

Author:

Krafft C.ORCID,Volokitin A. S.

Abstract

Abstract Solar coronal and wind plasmas often contain density fluctuations of various scales and amplitudes. The scattering of Langmuir wave turbulence on these inhomogeneities modifies the properties of the radiated electromagnetic emissions traveling from the Sun to the Earth. This paper shows the similarities between the physical results obtained by (i) a model based on the Zakharov equations, describing the self-consistent dynamics of Langmuir wave turbulence spectra in a plasma with external density fluctuations, and (ii) a modeling, within the framework of geometric optics approximation, of quasi-particles (representing plasmon quanta) moving in a fluctuating potential. It is shown that the dynamics of the Langmuir spectra is governed by anomalous diffusion processes, as a result of multiple scattering of waves on the density fluctuations; the same dynamics are observed in the momenta distributions of quasi-particles moving in potential structures with random inhomogeneities. These spectra and distributions are both characterized by a fast broadening during which energy is transported to larger wavevectors and momenta, exhibiting nonlinear time dependence of the average squares of wavevectors and quasi-particle momenta as well as non-Gaussian tails in the asymptotic stage. The corresponding diffusion coefficients depend on the time and are proportional to the square of the average level of density (or potential) fluctuations. It appears that anomalous transport and superdiffusion phenomena are responsible for the spectral broadening.

Funder

GENCI

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3