Characteristics of Nanoflare Heating in a Coronal Bright Point

Author:

Hahn MichaelORCID,Ho BrandonORCID,Savin Daniel WolfORCID

Abstract

Abstract We have obtained constraints on the nanoflare energy distribution and timing for the heating of a coronal bright point. Observations of the bright point were made using the Extreme Ultraviolet Imaging Spectrometer on Hinode in slot mode, which collects a time series of monochromatic images of the region leading to unambiguous temperature diagnostics. The Enthalpy-Based Thermal Evolution of Loops model was used to simulate nanoflare heating of the bright point and generate a time series of synthetic intensities. The nanoflare heating in the model was parameterized in terms of the power-law index α of the nanoflare energy distribution, which is ∝ E α ; average nanoflare frequency f; and the number N of magnetic strands making up the observed loop. By comparing the synthetic and observed light curves, we inferred the region of the model parameter space (α, f, N) that was consistent with the observations. Broadly, we found that N and f are inversely correlated with one another, while α is directly correlated with either N or f. These correlations are likely a consequence of the region requiring a certain fixed energy input, which can be achieved in various ways by trading off among the different parameters. We also find that a value of α > 2 generally gives the best match between the model and observations, which indicates that the heating is dominated by low-energy events. Our method of using monochromatic images, focusing on a relatively simple structure, and constraining nanoflare parameters on the basis of statistical properties of the intensity provides a versatile approach to better understand the nature of nanoflares and coronal heating.

Funder

NSF Solar Terrestrial Research

NSF Astronomy and Astrophysics

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tracing the signatures of a quiet Sun nanoflare;Astronomy & Astrophysics;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3