A Census of Blue Stragglers in Gaia DR2 Open Clusters as a Test of Population Synthesis and Mass Transfer Physics

Author:

Leiner Emily M.ORCID,Geller AaronORCID

Abstract

Abstract We use photometry and proper motions from Gaia DR2 to determine the blue straggler star (BSS) populations of 16 old (1–10 Gyr), nearby (d < 3500 pc) open clusters. We find that the fractional number of BSS compared to red giant branch stars increases with age, starting near zero at 1 Gyr and flattening to ∼0.35 by 4 Gyr. Fitting stellar evolutionary tracks to these BSSs, we find that their mass distribution peaks at a few tenths of a solar mass above the main-sequence turnoff. BSSs more than 0.5 M above the turnoff make up only ∼25% of the sample, and BSSs more than 1.0 M above the turnoff are rare. We compare this to Compact Object Synthesis and Monte Carlo Investigation Code population synthesis models of BSSs formed via mass transfer. We find that standard population synthesis assumptions dramatically under-produce the number of BSS in old open clusters. We also find that these models overproduce high-mass BSSs relative to lower-mass BSSs. The expected number of BSSs formed through dynamics do not fully account for this discrepancy. We conclude that in order to explain the observed BSS populations from Roche lobe overflow, mass transfer from giant donors must be more stable than assumed in canonical mass-transfer prescriptions, and including nonconservative mass transfer is important in producing realistic BSS masses. Even with these modifications, it is difficult to achieve the large number of BSSs observed in the oldest open clusters. We discuss some additional physics that may explain the large number of observed blue stragglers among old stellar populations.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3