Low- and High-velocity O vi in Milky Way-like Galaxies: The Role of Stellar Feedback

Author:

Zhang 张 Zhijie 志杰,Zhang 张 Xiaoxia 小霞ORCID,Li 李 Hui 辉ORCID,Fang 方 Taotao 陶陶ORCID,Yu 余 Qingzheng 清正ORCID,Luo 罗 Yang 阳ORCID,Marinacci FedericoORCID,Sales Laura V.ORCID,Torrey PaulORCID,Vogelsberger MarkORCID

Abstract

Abstract Milky Way-type galaxies are surrounded by a warm-hot gaseous halo containing a considerable amount of baryons and metals. The kinematics and spatial distribution of highly ionized ion species such as O vi can be significantly affected by supernova (SN) explosions and early (pre-SN) stellar feedback (e.g., stellar winds, radiation pressure). Here we investigate effects of stellar feedback on O vi absorptions in Milky Way−like galaxies by analyzing the suites of high-resolution hydrodynamical simulations under the framework of SMUGGLE, a physically motivated subgrid interstellar medium and stellar feedback model for the moving-mesh code Arepo. We find that the fiducial run with the full suite of stellar feedback and moderate star formation activities can reasonably reproduce Galactic O vi absorptions observed by space telescopes such as the Far-Ultraviolet Spectroscopic Explorer, including the scale height of low-velocity (∣v LSR∣ < 100 km s−1) O vi, the column density–line width relation for high-velocity (100 km s−1 ≤ ∣v LSR∣ < 400 km s−1) O vi, and the cumulative O vi column densities. In contrast, model variations with more intense star formation activities deviate from observations further. Additionally, we find that the run considering only SN feedback is in broad agreement with the observations, whereas in runs without SN feedback this agreement is absent, which indicates a dominant role of SN feedback in heating and accelerating interstellar O vi. This is consistent with the current picture that interstellar O vi is predominantly produced by collisional ionization where mechanical feedback can play a central role. In contrast, photoionization is negligible for O vi production owing to the lack of high-energy (≳114 eV) photons required.

Funder

MOST ∣ National Natural Science Foundation of China

MOE ∣ Fundamental Research Funds for the Central Universities

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3