Magnetic Fields beneath Active Region Coronal Loops

Author:

Judge Philip G.ORCID,Kleint L.ORCID,Kuckein C.ORCID

Abstract

Abstract We examine the hypothesis that multipolar magnetic fields advected by photospheric granules can contribute to heating the active chromosphere and corona. On 2020 September 28 the Gregor Infrared Spectrograph (GRIS) and HiFI+ instruments at the GREGOR telescope obtained data of NOAA 12773. We analyze Stokes profiles of spectral lines of Si i and He i, to study magnetic fields from the photosphere to the upper chromosphere. Magnetogram and EUV data from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly instruments on the Solar Dynamics Observatory spacecraft are coaligned and studied in relation to the GRIS data. At coronal loop footpoints, minor polarity fields comprise just 0.2% and 0.02% of the flux measured over the 40″ × 60″ area observed in the photosphere and upper chromosphere, centered 320″ from the disk center. Significantly, the minority fields are situated ≳12″ from bright footpoints. We use physical arguments to show that any unresolved minority flux cannot reach coronal footpoints adjacent to the upper chromosphere. Even if it did, the most optimistic estimate of the energy released through chromospheric reconnection is barely sufficient to account for the coronal energy losses. Further, dynamical changes accompanying reconnection between uni- and multipolar fields are seen neither in the He i data nor in narrowband movies of the Hα line core. We conclude that the hypothesis must be rejected. Bright chromospheric, transition region, and coronal loop plasmas must be heated by mechanisms involving unipolar fields.

Funder

National Science Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3