The First Estimation of the Ambipolar Diffusivity Coefficient from Multi-scale Observations of the Class 0/I Protostar, HOPS-370

Author:

Thieme Travis J.ORCID,Lai Shih-PingORCID,Lee Yueh-NingORCID,Lin Sheng-JunORCID,Yen Hsi-WeiORCID

Abstract

Abstract Protostars are born in magnetized environments. As a consequence, the formation of protostellar disks can be suppressed by the magnetic field, efficiently removing the angular momentum of the infalling material. Nonideal MHD effects are proposed as one way to allow protostellar disks to form. Thus, it is important to understand their contributions to observations of protostellar systems. We derive an analytical equation to estimate the ambipolar diffusivity coefficient at the edge of the protostellar disk in the Class 0/I protostar, HOPS-370, for the first time, under the assumption that the disk radius is set by ambipolar diffusion. Using previous results of the protostellar mass, disk mass, disk radius, density and temperature profiles, and magnetic field strength, we estimate the ambipolar diffusivity coefficient to be 1.7 1.4 + 1.5 × 10 19 cm 2 s 1 . We quantify the contribution of ambipolar diffusion by estimating its dimensionless Elsässer number to be 1.7 1.0 + 1.0 , indicating its dynamical importance in this region. We compare our results to those of the chemical calculations of the ambipolar diffusivity coefficient using the Non-Ideal Magnetohydrodynamics Coefficients and Ionization Library, which are consistent with our results. In addition, we compare our derived ambipolar diffusivity coefficient to the diffusivity coefficients for ohmic dissipation and the Hall effect, and find ambipolar diffusion is dominant in our density regime. These results demonstrate a new methodology to understand nonideal MHD effects in observations of protostellar disks. More detailed modeling of the magnetic field, envelope, and microphysics, along with a larger sample of protostellar systems, is needed to further understand the contributions of nonideal MHD.

Funder

National Science and Technology Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3