Infall Profiles for Supercluster-scale Filaments

Author:

Odekon Mary CroneORCID,Jones Michael G.ORCID,Graham LucasORCID,Kelley-Derzon JessicaORCID,Halstead EvanORCID

Abstract

Abstract We present theoretical expectations for infall toward supercluster-scale cosmological filaments, motivated by the Arecibo Pisces–Perseus Supercluster Survey (APPSS) to map the velocity field around the Pisces–Perseus Supercluster (PPS) filament. We use a minimum spanning tree applied to dark matter halos the size of galaxy clusters to identify 236 large filaments within the Millennium simulation. Stacking the filaments along their principal axes, we determine a well-defined, sharp-peaked velocity profile function that can be expressed in terms of the maximum infall rate V max and the distance ρ max between the location of maximum infall and the principal axis of the filament. This simple, two-parameter functional form is surprisingly universal across a wide range of linear mass densities. V max is positively correlated with the halo mass per length along the filament, and ρ max is negatively correlated with the degree to which the halos are concentrated along the principal axis. We also assess an alternative, single-parameter method using V 25, the infall rate at a distance of 25 Mpc from the axis of the filament. Filaments similar to the PPS have V max = 612 ± 116 km s−1, ρ max = 8.9 ± 2.1 Mpc, and V 25 = 329 ± 68 km s−1. We create mock observations to model uncertainties associated with viewing angle, lack of three-dimensional velocity information, limited sample size, and distance uncertainties. Our results suggest that it would be especially useful to measure infall for a larger sample of filaments to test our predictions for the shape of the infall profile and the relationships among infall rates and filament properties.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3