Abstract
Abstract
Discovered in 2011 with LOFAR, the 15 Jy low-frequency radio transient ILT J225347+862146 heralds a potentially prolific population of radio transients at <100 MHz. However, subsequent transient searches in similar parameter space yielded no detections. We test the hypothesis that these surveys at comparable sensitivity have missed the population due to mismatched survey parameters. In particular, the LOFAR survey used only 195 kHz of bandwidth at 60 MHz, while other surveys were at higher frequencies or had wider bandwidth. Using 137 hr of all-sky images from the Owens Valley Radio Observatory Long Wavelength Array, we conduct a narrowband transient search at ∼10 Jy sensitivity with timescales from 10 minutes to 1 day and a bandwidth of 722 kHz at 60 MHz. To model the remaining survey selection effects, we introduce a flexible Bayesian approach for inferring transient rates. We do not detect any transient and find compelling evidence that our nondetection is inconsistent with the detection of ILT J225347+862146. Under the assumption that the transient is astrophysical, we propose two hypotheses that may explain our nondetection. First, the transient population associated with ILT J225347+862146 may have a low all-sky density and display strong temporal clustering. Second, ILT J225347+862146 may be an extreme instance of the fluence distribution, of which we revise the surface density estimate at 15 Jy to 1.1 × 10−7 deg−2 with a 95% credible interval of (3.5 × 10−12, 3.4 × 10−7) deg−2. Finally, we find a previously identified object coincident with ILT J225347+862146 to be an M dwarf at 420 pc.
Funder
National Science Foundation
Simons Foundation
Schmidt Futures
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Spatially Resolved Observations of Meteor Radio Afterglows With the OVRO‐LWA;Journal of Geophysical Research: Space Physics;2024-02
2. Time-Domain Science Pipelines for the OVRO-LWA;2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC);2022-05-29