Fully Kinetic Shearing-box Simulations of Magnetorotational Turbulence in 2D and 3D. I. Pair Plasmas

Author:

Bacchini FabioORCID,Arzamasskiy LevORCID,Zhdankin VladimirORCID,Werner Gregory R.ORCID,Begelman Mitchell C.ORCID,Uzdensky Dmitri A.ORCID

Abstract

Abstract The magnetorotational instability (MRI) is a fundamental mechanism determining the macroscopic dynamics of astrophysical accretion disks. In collisionless accretion flows around supermassive black holes, MRI-driven plasma turbulence cascading to microscopic (i.e., kinetic) scales can result in enhanced angular-momentum transport and redistribution, nonthermal particle acceleration, and a two-temperature state where electrons and ions are heated unequally. However, this microscopic physics cannot be captured with standard magnetohydrodynamic (MHD) approaches typically employed to study the MRI. In this work, we explore the nonlinear development of MRI turbulence in a pair plasma, employing fully kinetic particle-in-cell (PIC) simulations in two and three dimensions. First, we thoroughly study the axisymmetric MRI with 2D simulations, explaining how and why the 2D geometry produces results that differ substantially from 3D MHD expectations. We then perform the largest (to date) 3D simulations, for which we employ a novel shearing-box approach, demonstrating that 3D PIC models can reproduce the mesoscale (i.e., MHD) MRI dynamics in sufficiently large runs. With our fully kinetic simulations, we are able to describe the nonthermal particle acceleration and angular-momentum transport driven by the collisionless MRI. Since these microscopic processes ultimately lead to the emission of potentially measurable radiation in accreting plasmas, our work is of prime importance to understand current and future observations from first principles, beyond the limitations imposed by fluid (MHD) models. While in this first study we focus on pair plasmas for simplicity, our results represent an essential step toward designing more realistic electron–ion simulations, on which we will focus in future work.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3