The Dynamic Response of Jovian Magnetotail Reconnection to Enhanced Solar Wind Ram Pressure

Author:

Chen JunjieORCID,Zhang Binzheng,Delamere Peter A.,Yao ZhonghuaORCID,Brambles Oliver

Abstract

Abstract In this study, we employ the Grid Agnostic Magnetohydrodynamic (MHD) for Extended Research Applications (GAMERA), a high-resolving-power, three-dimensional global MHD model, to simulate magnetotail reconnection in Jupiter's magnetosphere. While previous satellite observations have provided initial statistics on magnetotail reconnection properties at Jupiter, they have been limited in spacetime coverage, leaving the dynamic process of Jovian magnetotail reconnection and its response to the solar wind (SW) poorly understood. Using MHD simulations, we quantitatively analyze the temporal evolution and spatial dependence of nightside reconnection in Jupiter's magnetotail under ideal quiet and enhanced SW conditions. Our results demonstrate that magnetotail reconnection tends to occur in the midnight and postmidnight sectors, with a low occurrence in the premidnight sector, consistent with both Galileo and Juno observations and predictions by Delamere & Bagenal. The magnetic local time (MLT)–radial distribution of magnetotail reconnection is broad, indicating that Jovian magnetotail reconnection is always dynamic rather than steady state. Enhanced SW ram pressure can decrease the MLT coverage of magnetotail reconnection by compressing Jupiter's magnetosphere. However, the occurrence of magnetotail reconnection near the midnight and postmidnight sectors is enhanced by SW compression beyond 60 R J, but is not significantly impacted by SW compression within 60 R J. Conversely, SW compression suppresses reconnection in the premidnight sector, leading to a stronger dawn–dusk asymmetry in the occurrence and location of magnetotail reconnection. This study validates the applicability of the GAMERA code for simulating Jupiter’s magnetosphere and provides complementary insights into the dynamic structure and the SW response of Jupiter’s magnetosphere.

Funder

The General Program of National Natural Science Foundation of China

RGC General Research Fund

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3