Abstract
Abstract
The overabundance of gas molecules in the coldest regions of space points to a nonthermal desorption process. Laboratory simulations show the efficient desorption of CO ice that is exposed to ultraviolet radiation, known as photodesorption, which decreases with increasing ice deposition temperature. However, our understanding of this abnormal phenomenon still remains elusive. In this work, we show that the same phenomenon—and, in particular, a dramatic drop in the photodesorption yield—is observed when the deposition temperature is 19 K and higher. Also, the minimum ice thickness that accounts for a constant photodesorption yield of CO ice is dependent on the deposition temperature, an observation that is reported here for the first time. We propose that the key parameters dominating the absorbed photon energy transfer in CO ice, and contributing to the measured photodesorption yields, are the energy transfer length, the desorption yield contributed by a single ice layer, and the relative effective surface area. These parameters should be incorporated into astrophysical models that simulate the photodesorption of the top CO-rich ice layer in icy dust populations, with a size distribution that is related to the ice thickness.
Funder
Ministry of Science and Technology, Taiwan
National Science and Technology Council
Spanish Ministry of Science, Innovation and Universities
Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献