Spatial and Kinematic Clustering of Stars in the Galactic Disk

Author:

Kamdar HarshilORCID,Conroy CharlieORCID,Ting Yuan-SenORCID,El-Badry KareemORCID

Abstract

Abstract The Galactic disk is expected to be spatially and kinematically clustered on many scales due to both star formation and the Galactic potential. In this work we calculate the spatial and kinematic two-point correlation functions (TPCF) using a sample of 1.7 × 106 stars with radial velocities from Gaia DR2. Clustering is detected on spatial scales of 1–300 pc and a velocity scale of 15 km s−1. After removing bound structures, the data have a power-law index of γ ≈ −1 for 1 pc < Δr < 100 pc and γ ≲ −1.5 for Δr > 100 pc. We interpret these results with the aid of a star-by-star simulation of the Galaxy, in which stars are born in clusters orbiting in a realistic potential that includes spiral arms, a bar, and giant molecular clouds. We find that the simulation largely agrees with the observations at most spatial and kinematic scales. In detail, the TPCF in the simulation is shallower than the data at ≲20 pc scales, and steeper than the data at ≳30 pc. We also find a persistent clustering signal in the kinematic TPCF for the data at large Δv (>5 km s−1) that is not present in the simulations. We speculate that this mismatch between observations and simulations may be due to two processes: hierarchical star formation and transient spiral arms. We also predict that the addition of ages and metallicities measured with a precision of 50% and 0.05 dex, respectively, will enhance the clustering signal beyond current measurements.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3