Low-level Carbon Monoxide Line Polarization in Two Protoplanetary Disks: HD 142527 and IM Lup

Author:

Stephens Ian W.ORCID,Fernández-López Manuel,Li Zhi-Yun,Looney Leslie W.ORCID,Teague RichardORCID

Abstract

Abstract Magnetic fields are expected to play an important role in accretion processes for circumstellar disks. However, measuring the magnetic field morphology is difficult, especially when given that polarimetric (sub)millimeter continuum observations may not trace the fields in most disks. The Goldreich–Kylafis effect suggests that line polarization is perpendicular or parallel to the magnetic field direction. We attempt to observe CO(2−1), 13CO(2−1), and C18O(2−1) line polarization toward HD 142527 and IM Lup, which are large and bright protoplanetary disks. We use spatial averaging and spectral integration to search for signals in both disks, and we detect a potential CO(2−1) Stokes Q signal toward both disks. The total CO(2−1) polarization fractions are 1.57% ± 0.18% and 1.01% ± 0.10% for HD 142527 and IM Lup, respectively. Our Monte Carlo simulations indicate that these signals are marginal. We also stack Stokes parameters based on the Keplerian rotation, but no signal was found. Across the disk traced by dust of HD 142527, the 3σ upper limits for at 05 (∼80 au) resolution are typically less than 3% for CO(2−1) and 13CO(2−1) and 4% for C18O(2−1). For IM Lup the 3σ upper limits for these three lines are typically less than 3%, 4%, and 12%, respectively. Upper limits based on our stacking technique are up to a factor of ∼10 lower, although stacking areas can potentially average out small-scale polarization structure. We also compare our continuum polarization at 1.3 mm to observations at 870 μm from previous studies. The polarization in the northern dust trap of HD 142527 shows a significant change in morphology and an increase in as compared to 870 μm. For IM Lup, the 1.3 mm polarization may be more azimuthal and has a higher than at 870 μm.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3