Abstract
Abstract
In a seminal paper, Parker showed the vertical stratification of the interstellar medium (ISM) is unstable if magnetic fields and cosmic rays provide too large a fraction of pressure support. Cosmic ray acceleration is linked to star formation, so Parker’s instability and its nonlinear outcomes are a type of star formation feedback. Numerical simulations have shown the instability can significantly restructure the ISM, thinning the thermal gas layer and thickening the magnetic field and cosmic ray layer. However, the timescale on which this occurs is rather long (∼0.4 Gyr). Furthermore, the conditions for instability depend on the model adopted for cosmic ray transport. In this work, we connect the instability and feedback problems by examining the effect of a single, spatially and temporally localized cosmic ray injection on the ISM over ∼1 kpc3 scales. We perform cosmic ray magnetohydrodynamic simulations using the Athena++ code, varying the background properties, dominant cosmic ray transport mechanism, and injection characteristics between our simulation runs. We find robust effects of buoyancy for all transport models, with disruption of the ISM on timescales as short as 100 Myr when the background equilibrium is dominated by cosmic ray pressure.
Funder
NASA ∣ SMD ∣ Astrophysics Division
NSF ∣ MPS ∣ Division of Astronomical Sciences
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献