Observation of a Lunar Eclipse at 89, 150, and 183 GHz

Author:

Burgdorf Martin J.ORCID,Liu NiutaoORCID,Buehler Stefan A.ORCID,Jin Ya-QiuORCID

Abstract

Abstract We describe the measurement of the brightness temperature of the Moon from space during a total lunar eclipse by using a microwave sounder aboard a weather satellite. Previous observations of lunar eclipses were inconsistent and did not cover the frequency range between 100 and 200 GHz. In this work, we seek to establish a reliable relationship between frequency and drop in brightness temperature during a total eclipse for millimeter wavelengths. For this purpose, we chose the eclipse on 2004 October 28, because it coincided with appearances of the Moon in the deep space view of the Advanced Microwave Sounding Unit-B on NOAA-15. It was therefore possible to measure its disk-integrated radiance at 89, 150, and 183 GHz at 100 minutes intervals. Our observations are, to the best of our knowledge, the only ones between 100 and 200 GHz, and demonstrate the nearly linear dependency on frequency of the maximum relative drop in effective temperature during an eclipse. The slope of this function is m = 0.00114 ± 0.00017 GHz−1 in the range 88–300 GHz. The good agreement between the variations of the effective lunar temperature and a new radiative-transfer model suggests that the Moon is suitable as a flux standard for microwave observations with beam sizes larger than 0.5°.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of the Temperatures in Permanently Shadowed Region of the Crater Shackleton and Implications to In-Situ Detection;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3