New Constraints on Titan’s Stratospheric n-Butane Abundance

Author:

Steffens Brendan L.ORCID,Nixon Conor A.ORCID,Sung KeeyoonORCID,Irwin Patrick G. J.ORCID,Lombardo Nicholas A.ORCID,Pereira Eric

Abstract

Abstract Curiously, n-butane has yet to be detected at Titan, though it is predicted to be present in a wide range of abundances that span over 2.5 orders of magnitude. We have searched infrared spectroscopic observations of Titan for signals from n-butane (n-C4H10) in Titan’s stratosphere. Three sets of Cassini Composite Infrared Spectrometer Focal Plane 4 (1050–1500 cm−1) observations were selected for modeling, having been collected from different flybys and pointing latitudes. We modeled the observations with the Nonlinear Optimal Estimator for MultivariatE Spectral AnalySIS radiative transfer tool. Temperature profiles were retrieved for each of the data sets by modeling the ν 4 emission from methane near 1305 cm−1. Then, incorporating the temperature profiles, we retrieved abundances of all of Titan’s known trace gases that are active in this spectral region, reliably reproducing the observations. We then systematically tested a set of models with varying abundances of n-butane, investigating how the addition of this gas affected the fits. We did this for several different photochemically predicted abundance profiles from the literature, as well as for a constant-with-altitude profile. Ultimately, though we did not produce any firm detection of n-butane, we derived new upper limits on its abundance specific to the use of each profile and to multiple different ranges of stratospheric altitudes. These results will tightly constrain the C4 chemistry of future photochemical modeling of Titan’s atmosphere and also motivate the continued search for n-butane and its isomer, isobutane.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mid-infrared cross-sections and pseudoline parameters for trans-2-butene (2-C4H8);Journal of Quantitative Spectroscopy and Radiative Transfer;2023-12

2. Material Properties of Organic Liquids, Ices, and Hazes on Titan;The Astrophysical Journal Supplement Series;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3