An Explainable Deep-learning Model of Proton Auroras on Mars

Author:

Dhuri Dattaraj B.ORCID,Atri Dimitra,AlHantoobi Ahmed

Abstract

Abstract Proton auroras are widely observed on the dayside of Mars, identified as a significant intensity enhancement in the hydrogen Lyα (121.6 nm) emission at altitudes of ∼110 and 150 km. Solar wind protons penetrating as energetic neutral atoms into Mars’ thermosphere are thought to be primarily responsible for these auroras. Recent observations of spatially localized “patchy” proton auroras suggest a possible direct deposition of protons into Mars’ atmosphere during unstable solar wind conditions. Improving our understanding of proton auroras is therefore important for characterizing the interaction of the solar wind with Mars’ atmosphere. Here, we develop a first purely data-driven model of proton auroras using Mars Atmosphere and Volatile Evolution (MAVEN) in situ observations and limb scans of Lyα emissions between 2014 and 2022. We train an artificial neural network that reproduces individual Lyα intensities and relative Lyα peak intensity enhancements with Pearson correlations of ∼94% and ∼60% respectively for the test data, along with a faithful reconstruction of the shape of the observed altitude profiles of Lyα emission. By performing a Shapley Additive Explanations (SHAP) analysis, we find that solar zenith angle, solar longitude, CO2 atmosphere variability, solar wind speed, and temperature are the most important features for the modeled Lyα peak intensity enhancements. Additionally, we find that the modeled peak intensity enhancements are high for early local-time hours, particularly near polar latitudes, and the induced magnetic fields are weaker. Through SHAP analysis, we also identify the influence of biases in the training data and interdependences between the measurements used for the modeling, and an improvement of those aspects can significantly improve the performance and applicability of the ANN model.

Funder

NYUAD ∣ Research Institute Centers, New York University Abu Dhabi

Advanced Technology Research Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3