Porosity-filling Metamorphic Brines Explain Ceres’s Low Mantle Density

Author:

Melwani Daswani MohitORCID,Castillo-Rogez Julie C.ORCID

Abstract

Abstract Recent work has sought to constrain the composition and makeup of the dwarf planet Ceres’s mantle, which has a relatively low density, between 2400 and 2800 kg m−3, as inferred by observations by the Dawn mission. Explanations for this low density have ranged from a high fraction of porosity-filled brines to a high fraction of organic matter. We present a series of numerical thermodynamic models that yield the mineralogy and fluid composition in the mantle as a function of Ceres’s thermal evolution. We find that the resulting phase assemblage could have changed drastically since the formation of Ceres, as volatile-bearing minerals such as serpentine and carbonates would partially destabilize and release their volatiles as temperatures in the mantle reach their maximum about 3 Gyr after Ceres’s formation. These volatiles consist mainly of aqueous fluids containing Na+ and HS throughout the metamorphic evolution of Ceres and, in addition, high concentrations of CO2 at high temperatures relatively recently. The predicted present-day phase assemblage in the mantle, consisting of partially devolatilized minerals and 13–30 vol% fluid-filled porosity, is consistent with the mantle densities inferred from Dawn. The metamorphic fluids generated in Ceres’s mantle may have replenished an ocean at the base of the crust and may even be the source of the Na2CO3 and NaHCO3 mineral deposits observed at Ceres’s surface.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3