On the Fate of Slow Boulders Ejected after DART Impact on Dimorphos

Author:

Moreno FernandoORCID,Tancredi GonzaloORCID,Campo Bagatin AdrianoORCID

Abstract

Abstract On 2022 September 26 23:14 UT, the NASA Double Asteroid Redirection Test spacecraft successfully impacted Dimorphos, the secondary component of the binary (65803) Didymos system, demonstrating asteroid orbit deflection for the first time. A large amount of debris, consisting of a wide size–frequency distribution of particulates (from micron-sized dust to meter-sized boulders), was released, and a long-lasting tail has been observed over more than 9 months since impact. An important fraction of the ejecta mass has been ejected as individual meter-sized boulders, as have been found in images obtained by the Light Italian CubeSat for Imaging of Asteroid (LICIACube), as well as from the Hubble Space Telescope (HST). While the boulders observed by LICIACube had projected speeds of several tens of m s–1, those seen by the HST were about 100 times slower. In this paper, we analyze the long-term orbital evolution of those slow boulders using different dynamical codes, providing constraints on the fate of such large particles, and giving insight on the possibility of observing some of those boulders that might remain in orbit at the time of the ESA/Hera mission arrival to the binary system in late 2026.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3