Sample-based Spectral Mapping around Landing Sites on the Moon—Lunar Timescale Part 1

Author:

Bultel B.ORCID,Werner S. C.ORCID

Abstract

Abstract Studying the geology of a terrestrial body and its evolution requires being able to set up a chronology. Crater statistics is a powerful tool to do so. However, calibration of this method, which is derived on the Moon, requires properly defined geological units, large enough for reliable crater statistics, and dated samples representative of these geological units. Yet, little effort has been put into choosing a representative set of lunar mission units and samples based on spectral information. Therefore, accuracy and precision of so-called cratering-chronology models remain limited. Here, we analyzed near-infrared orbital data to suggest a geological unit as a reference unit for Apollo 11, 12, 14–17 and Luna 16, 20, and 24 landing sites. We used near-infrared spectral information from orbital data and laboratory measurements to identify the set of samples that is the most representative of the landing-site reference units. We now provide spectrally constrained reference units, for which crater frequencies can be derived, and our sample recommendation will assign the reference age for updating the currently existing cratering-chronology models. We highlight that determining a reference geological unit in the highlands of the Moon is challenging because of the very nature of the terrain, while it is more straightforward for mare units. However, ejecta presence on these mare units comprises solvable challenges.

Funder

Norges Forskningsråd

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3