Low-Frequency Repetitive Transcranial Magnetic Stimulation in the Early Subacute Phase of Stroke Enhances Angiogenic Mechanisms in Rats

Author:

Lee YookyungORCID,Oh Byung-MoORCID,Park Sung-HyeORCID,Han Tai RyoonORCID

Abstract

Objective To characterize the repetitive transcranial magnetic stimulation (rTMS) induced changes in angiogenic mechanisms across different brain regions.Methods Seventy-nine adult male Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (day 0) and then treated with 1-Hz, 20-Hz, or sham stimulation of their lesioned hemispheres for 2 weeks. The stimulation intensity was set to 100% of the motor threshold. The neurological function was assessed on days 3, 10, and 17. The infarct volume and angiogenesis were measured by histology, immunohistochemistry, Western blot, and real-time polymerase chain reaction (PCR) assays. Brain tissue was harvested from the ischemic core (IC), ischemic border zone (BZ), and contralateral homologous cortex (CH).Results Optical density of angiopoietin1 and synaptophysin in the IC was significantly greater in the low-frequency group than in the sham group (p=0.03 and p=0.03, respectively). The 1-Hz rTMS significantly increased the level of Akt phosphorylation in the BZ (p<0.05 vs. 20 Hz). Endothelial nitric oxide synthase phosphorylation was increased in the IC (p<0.05 vs. 20 Hz), BZ (p<0.05 vs. 20 Hz), and CH (p<0.05 vs. 20 Hz and p<0.05 vs. sham). Real-time PCR demonstrated that low-frequency stimulation significantly increased the transcriptional activity of the TIE2 gene in the IC (p<0.05).Conclusion Low-frequency rTMS of the ipsilesional hemisphere in the early subacute phase of stroke promotes the expression of angiogenic factors and related genes in the brain, particularly in the injured area.

Funder

Seoul National University Hospital

Korea Research Foundation

Ministry for Health, Welfare and Family Affairs

Publisher

Korean Academy of Rehabilitation Medicine

Subject

Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3