The planetary boundary layer physical processes, the secondary thermal baroclinic circulation and inertial oscillation contribution to diurnal variation of the Etesian winds over the Aegean Sea

Author:

Prezerakos Nicholas G., ,

Abstract

Etesian winds constitute an important climatological phenomenon, which does not only moderate the heat during the summer in the Aegean Sea, but provides a source of clean renewable energy as well. Even though several papers have attempted to explain their dynamical and physical characteristics, the respective processes that drive the diurnal variation of the wind speed are not fully understood. The objective of this paper is to identify the processes responsible for diurnal variation with observed maximum wind speed around noon and minimum around midnight. Analytical solutions of a primitive equation set in Eulerian form, after introducing suitable conditions and approximations, reveal an inertial oscillation over the Aegean Sea. Data based on direct observations, ECMWF IFS high resolution analyses and high-resolution simulations with the Weather Research and Forecasting (WRF) model are utilized to find out the type and structure of the planetary boundary layer (PBL) over the Aegean Sea. This PBL appears to be of a marine character and turbulent mostly during the day but less during the night. The direct impact of local and regional thermally-driven circulations is found to be the main cause of the diurnal variation of the observed wind and partly the inertial oscillation. Results from numerical simulations certify these findings. Furthermore, the momentum and Newtonian heating exchanges by the physical processes inside the PBL, where the gradient wind together with smaller scales of atmospheric motions exist, are also necessary for explaining the variability of the Etesian winds.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3