Jumla Sign Language Annotation Tool: an overview

Author:

Othman Achraf1,El Ghoul Oussama1

Affiliation:

1. Mada Center

Abstract

This paper describes an ongoing project on developing a new web-based tool for annotating Sign languages. This tool is used to annotate the First Qatari Sign Language dataset called Jumla Dataset: The Jumla Qatari Sign Language Corpus” with written Arabic text. The annotation of videos in Qatari Sign Language (QSL) takes input from signers to identify the Arabic glosses components toward representing the QSL in a written way with high accuracy, furthermore to the use of the annotation output in the development of computational Sign Language tools. The QSL annotation is based on an input of 4 videos recorded by deaf persons or Sign Language interpreters from different angles (front, left side, right side, and facial view). The output is a JSON file containing all the interpreted sentences given as an entry record. The glosses are annotated for each period and aligned with the Arabic content. Moreover, the presented tool, available as an open source, provides a management system to classify all records from cameras, motion capture systems, and edited files in addition to the possibility to create components for each gloss annotation terminology depending on the target Sign Language.

Publisher

Mada Center

Reference13 articles.

1. J. G. Kyle, J. Kyle, B. Woll, G. Pullen, and F. Maddix, Sign language: The study of deaf people and their language. Cambridge university press, 1988.

2. K. Emmorey, Language, cognition, and the brain: Insights from sign language research. Psychology Press, 2001.

3. U. Bellugi and S. Fischer, A comparison of sign language and spoken language,” Cognition, vol. 1, no. 2–3, pp. 173–200, 1972.

4. N. S. Dash, Language Corpora Annotation and Processing. Springer, 2021.

5. Annotation vs Notation - What’s the difference?, WikiDiff, May 05, 2015. //wikidiff.com/annotation/notation (accessed Nov. 30, 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3