Abstract
Silica is the most reinforcing filler for enhancing the rubber properties. However, the incompatibility of silica with non-polar rubber is the main problem for application. Therefore, the researchers attempted to use the several methods in order to solve the problem. In this work, the appropriated hydroxyl telechelic natural rubber (HTNR) was determined by varying molecular weights in the range of 2,000-3,000 g·mol-1 and contents in the range of 4-16%w/w of silica content in order to enhance the rubber properties. It was found that the decrease in Payne effect and the improvement in cure characteristics of silica-reinforced NR were achieved by using HTNR. However, the incorporation of various molecular weights and contents of HTNR in rubber influenced C1 (crosslink density determined by stress-strain measurement) in rubber, which related to rubber properties. The increasing in C1 caused the increases in tensile strength and abrasion index and the decrease in heat build-up. The optimum properties of rubber with silica loading at 30 phr was achieved by adding 2,000 g·mol-1 HTNR at a loading of 8%w/w of silica content. However, for silica-reinforced NR, TESPT provided better properties than HTNRs.
Publisher
Metallurgy and Materials Science Research Institute, Chulalongkorn University
Subject
Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献