Author:
Jongprateep Oratai,Inseemeesak Benjaporn,Techapiesancha-Roenkij Ratchatee,Bansiddhi Ampika,Vijarnsorn Monchanok
Abstract
Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a biomaterial exploited in bone graft and implant coating applications. The present study aimed at developing the technique employed in coating hydroxyapatite onto internal fixation titanium plates. The coating consisted of hydroxyapatite layer and titanium dioxide layer, functioning as a buffer layer between hydroxyapatite and titanium plate substrate. The titanium substrates were i) untreated; ii) polished and immersed in 70% nitric acid; and iii) immersed in nitric acid. Coating of titanium dioxide and hydroxyapatite layers were achieved via hydrothermal technique. Porous hydroxyapatite layers with the average pore size close to 120 µm, and porosity ranging from 40 to 45% were observed. Fair adhesion among titanium substrate, titanium dioxide and hydroxyapatite layers were found in the samples prepared by polishing and acid immersion and the ones prepared by acid immersion. A peeling method (ASTM D3359 – 09E2), used in evaluation of adhesion on a 0B to 5B scale, was employed in determination of adhesion strength of the coating. The peeling results revealed that complete detachment of the buffer and hydroxyapatite layers occurred in untreated substrates. For the polished and acid immersed samples, the 2B category adhesion, which corresponds to film removal between 15 to 35%, was observed. The observation was being agreed with the image analysis which indicated that 67.7%-69% of coated area remained. Potential biocompatibility was tested by simulated body fluid (SBF) immersion. After 28 days, pH values remained unchanged. Slight weight increase and hydroxyapatite formation after immersion was observed, indicating potential bioactivity of the samples.
Publisher
Metallurgy and Materials Science Research Institute, Chulalongkorn University
Subject
Mechanics of Materials,General Materials Science
Reference45 articles.
1. O. Jongprateep, N. Wattana, N. Sato, P. T. Kien, and B. Inseemeesak, “Effects of solid loadings and silica addition on microstructure and compressive strength of hydroxyapatite specimens fabricated by freeze casting technique,” Ceramics International, vol. 44(1), pp. 156-160, 2018.
2. M. Nazir, O. P. Ting, T. S. Yee, S. Pushparajan, D. Swaminathan, and M. G. Kutty, “Biomimetic coating of modified titanium surfaces with hydroxyapatite using simulated body fluid,” Advances in Materials Science and Engineering, pp. 1-8, 2015.
3. R. S. Corpe, D. E. Steflik, R. Y. MD Whitehead, T. R. Young, and C. Jaramillo, “Correlative experimental animal and human clinical retrieval evaluation of hydroxyapatite (HA)-coated and non-coated implants in orthopaedics and dentistry,” Critical Reviews in Biomedical Engineering, vol. 28, pp. 395-398, 2000.
4. R. Sakkers, R. Dalmeyer, R. Brand, P. Rozing, and C. Van Blitterswijk, “Assessment of bioactivity for orthopaedics coating in a gaphealing model,” Journal of Biomedical Materials Research, vol. 36, pp. 265-273, 1998.
5. R. Family, M. Solati-Hashjin, S. N. Nik, and A. Nemati, “Surface modification for titanium implants by hydroxyapatite nanocomposite,” Caspian Journal of Internal Medicine, vol. 3, pp. 460-465, 2012.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献