High-temperature oxidation resistance of CrAlN thin films prepared by DC reactive magnetron sputtering

Author:

WITIT-ANUN Nirun,BURANAWONG Adisorn

Abstract

CrAlN thin films were prepared by using the reactive DC unbalanced magnetron sputtering method from the single alloy target on a silicon substrate. The effect of annealing temperature in the air which ranges from 500℃ to 900℃ for 1 h on phase structure, film composition, surface morphology, microstructure, and hardness was investigated by XRD, EDS, FE-SEM, and Nanoindentation techniques, respectively. The high-temperature (up to 900℃) oxidation resistance of the thin film was also evaluated. The result shows that solid solutions of (Cr,Al)N with (111), (200), and (220) planes for the as-deposited film and no oxide phase were found after annealing with different temperatures. The O content slightly increases with an increase in the annealing temperature with various Cr, Al, and N contents found by the EDS. From the FE-SEM result, as increased annealing temperature, the evolution of cross-sectional morphology from dense to compact columnar structure was exhibited but the oxides layer was not detected. These results concluded that the as-deposited thin film showed good oxidation resistance when annealed in air at an elevated temperature reaching 900℃. Moreover, the film’s hardness decreased from 61.19 GPa to 50.11 GPa with increasing the annealing temperature observed by the Nanoindentation technique.  

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

Subject

General Materials Science,Materials Science (miscellaneous),Metals and Alloys,Biomaterials,Ceramics and Composites,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3