Screen printed textile electrodes using graphene and carbon nanotubes with silver for flexible supercapacitor applications

Author:

Keawploy Norawich,Venkatkarthick Radhakrishnan,Wangyao Panyawat,Qin Jiaqian

Abstract

The eco-friendly conductive cotton textile is promising alternatives for the flexible substrates in wearable devices since the cotton is as an inexpensive natural fabric material and compatible in modern portable electronics with adequate electrical conductivity. In this work, flexible conductive cotton-based electrodes are prepared via a screen-printing method using the carbonaceous nanomaterials such as carbon nanotubes (CNTs) and graphene with an additional component of conductive silver (Ag) powder and textile ink. The prepared conductive cotton electrodes exhibit lower sheet resistance (<10 Ω) along with superior mass loading (20-30 mg.cm-2). On the basis of the performance of cotton electrodes prepared, an all-solid-state flexible supercapacitor device was successfully fabricated which exhibits a high specific areal capacitance of 677.12 mF.cm-2 at 0.0125 mA.cm-2 for a suitable electrode composition (60% of Ag and 40% CNTs) using a PVA-KOH gel electrolyte. The flexible device endures a stable electrochemical performance under severe mechanical deformation using different bending angles (0°, 30°, 45°, 60° and 90°) of the device and possesses excellent cyclic stability with the capacitance retention of ~80% even after 3000 CV cycles.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

Subject

Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3