Author:
RUANGCHAI Kittikhun,TONGSRI Ruangdaj,PEARCE John Thomas Harry,CHAIRUANGSRI Torranin,WIENGMOON Amporn
Abstract
In this study, the effects of annealing on the hardness and microstructure of 28 wt% Cr-2.6 wt% C iron with 1.4 wt% Mo/1 wt% W addition have been investigated. The as-cast samples were heated to 800℃ and held for 4 h followed by slow cooled with a cooling rate of 20℃h-1 to 500℃. Microstructures were characterized by X-ray diffractometry, optical microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Vickers macro-hardness and micro-hardness were measured. It was found that the as-cast microstructure in the hypoeutectic 28 wt% Cr iron without Mo or W addition consisted of primary austenite dendrite, eutectic M7C3 carbide and martensite. In the iron with 1.4 wt% Mo addition, multiple eutectic carbides of M7C3, M23C6 and M6C were observed. In contrast the addition of 1 wt% W changed the structure to hypereutectic containing primary M7C3, eutectic M7C3 and martensite. After the annealing heat treatment, ferrite +secondary carbides and some pearlite were present in the irons, due to decomposition of austenite during annealing. The macro-hardness in the as-cast condition of the iron without alloying and the irons with 1.4 wt% Mo/ 1 wt% W addition were 506, 529, and 576 HV30, respectively. Annealing heat treatment reduced the macro-hardness to about 390, 463, and 428 HV30, respectively.
Publisher
Metallurgy and Materials Science Research Institute, Chulalongkorn University
Subject
Mechanics of Materials,General Materials Science
Reference18 articles.
1. C. P. Tabrett, I. R. Sare, and M. R.Ghomashchi, “Microstructure-property relationships in high chromium white iron alloys,” International Materials Reviews, vol. 41, pp. 59-82, 1996.
2. G. Laird, R. Gundlach, and K. Rohrig, Abrasion-resistant cast iron Handbook. USA: AFS, 2000.
3. A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D. V. Edmonds, and J. T. H. Pearce, “Microstructural and crystallo-graphical study of carbides in 30 wt%Cr cast irons,” Acta Materialia, vol. 53, pp. 4143-4154, 2005.
4. M. Filipovic, Z. Kamberovic, and M. Korac, “Solidification of High Chromium white cast iron alloyed with vanadium,” Materials Transactions, vol. 52, pp. 386-390, 2011.
5. P. Dupin, and J. M. Schissler, “Influence of addition of silicon, molybdenum, vanadium, and tungsten upon the structural evolution of the as-cast state of a high-chromium cast iron (20% Cr, 2.6% C).” AFS Transactions, vol. 92, pp. 355-360, 1984.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献