Preparation of a mixed Al/Sc nano-oxide derived from the bauxite residue (red mud) via the sulfuric acid roasting–leaching–precipitation process

Author:

HABIBPOUR RaziehORCID,KASHI Eslam,JANFADA Mehdi

Abstract

In this study, three methods were used and compared for the selectable extraction of aluminum/ scandium with the least amount of iron in red mud (RM) samples from the Iran alumina plant in Jajarm as follows: 1) RM direct acid leaching with H2SO4, 2) RM washing with hydrochloric acid and oxalic acid before leaching with H2SO4, and 3) RM sulfuric acid roasting-leaching-precipitation.  The aim was to extract the highest amount of scandium while preventing the leaching of other metals, especially iron. Due to any discriminative features, the selective separation of Al/Sc with methods 1 and 2 was impossible practically. While, method 3 resulted in 73.7% of extracted scandium under optimal conditions with only 0.6% of iron found in the final product. The characterization of the final oxide product was done via inductively coupled plasma mass spectrometry (ICP-MS) and energy-dispersive X-ray analysis (EDX). The morphology of the oxide product was examined by field emission scanning electron microscopy (FE-SEM). This mixture oxide had a nanosize spherical shape and was distributed uniformly. The pH of the remaining red mud after the acid roasting-leaching-precipitation method was 8, which was far more environmentally desirable than the primary red mud with a pH = 12.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

Subject

Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3