Author:
NISAIMUN Surada,POOLCHARUANSIN Phitsanu,VISUTTIPITUKUL Patama,KLOMJIT Pitichon
Abstract
TiN thin films were deposited on biomaterial 3D printed Ti-6Al-4V substrates using two methods including direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). The coating times were compared between 5 min and 25 min. HiPIMS was developed based on DCMS by increasing degree of ionization in plasma and power densities in the order of kWcm-2 compared to Wcm-2 of DCMS. The film characteristics and mechanical properties were investigated by glancing incident x-ray diffractometer (GIXRD), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). Electrochemical behavior was analyzed by electrochemical impedance spectroscopy (EIS) in 1 M NaCl solution. The results showed that TiN films deposited by HiPIMS exhibited an equiaxed structure while those from DCMS had a columnar structure. As a consequence, corrosion resistance of HiPIMS films was better than the DCMS films. Furthermore, increasing coating time resulted in thicker TiN layer and therefore, promoted higher corrosion resistance.
Publisher
Metallurgy and Materials Science Research Institute, Chulalongkorn University
Subject
Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献