Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update

Author:

DAYA Arun,SAMSON NESARAJ Arputharaj

Abstract

Fuel cells use electrochemical processes to transform the chemical energy of a fuel into electrical energy, which is a key enabler for the shift to an H2-based economy. Because of their high energy conversion efficiency and low pollution emissions, fuel cells with polymer electrolyte membranes (PEMFCs) are regarded as being in frontline of commercialization for the transportation and automotive industries. However, there are two major hurdles to their future commercialization: cost and durability, which promote basic study and development of their components. In this article, we reviewed the materials, functional components, fabrication technologies and assembling characteristics related to PEMFCs. Platinum's significance as a catalyst in PEMFC applications stems from the fact that it beats all other catalysts in three critical parts: stability, selectivity, and activity. In order to create Pt rich surfaces of NPs, Pt metal is alloyed with d-block metals like Cu, Ni, Fe, and Co. PEMFC development is inextricably tied to the benefits and drawbacks of the Nafion membrane under various operating circumstances. Nafion membrane has some drawbacks, including poor performance at high temperatures (over 90℃), low conductivity under low humidification, and high cost. As a result, a variety of nanoscale additives are frequently added to Nafion nanocomposites to enhance the material's properties under fuel cell working conditions. Fiber composite based bipolar plates can deliver best performance. The assembly of PEMFC based on strap approach is being explored. The applications of PEMFC are also projected.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

Subject

General Materials Science,Materials Science (miscellaneous),Metals and Alloys,Biomaterials,Ceramics and Composites,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3