Dielectric Properties and Electrochemical behavior of Graphene Oxide derived from Myanmar Coal Minerals

Author:

MAUNG Min Maung,AUNG Chan Nyein,PANOMSUWAN Gasidit,WIN Khin Khin

Abstract

Graphene Oxide (GO) metal nanocomposites make up an emerging class of advanced materials and enhance material functionality to obtain multifunctional properties and working towards superior performance of energy storage devices. GO was derived from Myanmar coal minerals using Modified Hummer method. The silver and nickel nanoparticles were used as metal ions or metal nanoparticles to form GO nanocomposites. Their characteristics were identified by XRD, SEM and Raman Spectroscopy. The energy gap of GO and GO composites was also investigated by the aid of UV-Vis spectroscopy. The dielectric constant is measures of the amount of electrical energy that can be stored in GO derived from coal mineral. The frequency-dependent dielectric properties and AC conductivity has been explored using GW INSTEK LCR-8110 meter. It was found that the dielectric constant is maximum at low frequencies region and decreases with increasing frequency. The electrochemical performance of this sample was examined by cyclic voltammetry (CV) measurement. The CV curves of GO have typical rectangular-like shape and no evident oxidation/reduction peak. The prototypes of flat-shaped capacitors were prepared and their capacitive values were also determined. The as-prepared GO on the copper foil can be directly used to fabricate solid-state super capacitor.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

Subject

General Materials Science,Materials Science (miscellaneous),Metals and Alloys,Biomaterials,Ceramics and Composites,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3