Wear behavior of Aluminium 6061 alloy reinforced with coated/uncoated multiwalled carbon nanotube and graphene

Author:

KUMAR Vijee,NAGEGOWDA Kempaiah Ujjaini,BOPPANA Satish Babu,SENGOTTUVELU Ramesh,KAYAROGANAM PalanikumarORCID

Abstract

The current study deals with the fabrication and investigation of wear characteristics of Aluminium 6061(Al6061) hybrid metal matrix composites (MMCs) processed through powder metallurgy technique. Al6061 hybrid MMCs involving fixed 2 wt% of coated/uncoated multiwalled carbon nanotubes (MWCNTs) and varying weight percentages of graphene were fabricated through ball milling procedure. To enhance the scattering of MWCNTs in the matrix, MWCNTs were coated by means of copper through electroless deposition method. Dry sliding wear conduct of Al6061 MMCs was investigated using a pin-on-disc wear testing machine. It was found that at lower load, composites exhibited lower wear resistance than base alloy however at higher load, nanocomposites showed higher wear resistance. The research tried to find the effect of higher loads on the wear resistance. The composites were evaluated if they could give out reinforcements at higher loads during wear tests. The wear morphologies were reported using Scanning Electron Microscopy (SEM) and it was noticed that lower load abrasion was superior for the composites and base alloy although at higher loads adhesion was considered to be main reason for the wear of composites.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

Subject

Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metal matrix nanocomposites: future scope in the fabrication and machining techniques;The International Journal of Advanced Manufacturing Technology;2022-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3