Investigating the oxidation behavior of Mg-Zn alloy: Effects of heating rates, gas flow, protective atmosphere, and alloy composition

Author:

SARAÇOĞLU Tuğçe Nur,POLAT Safa,KOÇ Erkan,MASHRAH Muwafaq,NAJAH SAUD Amir,MICHALSKA-DOMAŃSKA Marta

Abstract

Magnesium-zinc alloys offer promising lightweight properties but are prone to oxidation during high-temperature processing and usage. In this study, the oxidation behavior of Mg-Zn alloy was examined according to the inert gas type flow rate, heating rate and alloy amount. Initially, alloys were produced by adding zinc at weight percentages of 0.5%, 1.5%, and 2% using the casting method. The alloys were characterized using X-ray fluorescence (XRF), X-ray Diffraction (XRD), and scanning electron microscope (SEM) analyses, revealing the formation of dendritic Mg-Zn intermetallic within the alloy. The oxidation behavior of these alloys was examined via differential thermal analysis (DTA) and thermogravimetric analysis (TGA), considering factors such as heating rate, gas flow rate, type of protective atmosphere, and amount of alloying element. The results indicated that the onset temperature of oxidation decreased with increasing heating rate. The effect of gas flow rate varied depending on the heating rate and the type of gas. Under a nitrogen atmosphere, conditions with a heating rate of 20°C∙min‒1 and a gas flow rate of 5 cm3∙min‒1 resulted in the least oxidation. In an argon atmosphere, a gas flow rate of 5 cm3∙min‒1 was found to be sufficient to prevent oxidation. However, at a gas flow rate of 1 cm3∙min‒1,  a heating rate of 20°C∙min‒1 was more effective in preventing oxidation. The alloying element (zinc) likely reduced oxidation, particularly at the 1.5% addition level, possibly due to the formation of intermetallic compounds.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3