Brazilein modified zinc oxide nanorods with enhanced visible light-responsive photocatalytic efficiency

Author:

AIEMPANAKIT Montri,SUDJAI Penpicha,SINGSUMPHAN Kittiyaporn,LAKSEE Sakchai,SUWANCHAWALIT Cheewita

Abstract

Photocatalytic efficiency of ZnO nanorods has been investigated with respect to the concentration of brazilein. Brazilein modified ZnO nanorods were prepared by an impregnation process with 1.0%w/v, 2.5%w/v, and 5.0%w/v of brazilein solution.  In order to correlate the variation in concentration distributions and photocatalytic performance, the phase composition, optical properties, and photo-catalytic activities of brazilein modified ZnO nanorods prepared with different brazilein concentrations have been investigated and compared to an unmodified ZnO nanorods. The photocatalytic properties were measured in terms of indigo carmine degradation under visible light irradiation. It was found that ZnO nanorods with the highest visible light-responsive photocatalytic efficiency were achieved by the modification of 5.0%w/v of brazilein resulting in indigo carmine degraded faster than the case of unmodified ZnO nanorod about 60% within 5 h.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

Subject

Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3