Development of measures for metrological support of Raman spectroscopy

Author:

Yushina A. A.1,Aseev V. A.2ORCID,Levin A. D.1ORCID

Affiliation:

1. All-Russian Scientific Research Institute for Optical and Physical Measurements (VNIIOFI)

2. National Research University of Information Technologies, Mechanics and Optics (ITMO)

Abstract

The method of Raman spectroscopy (RS) is widely used for timely metrological support of technological lines of the industrial sector in the chemical, medical and pharmaceutical, food, as well as criminalistics and forensic examinations. The wide application of the Raman spectroscopy method requires the use of specific metrological support tools, namely, measures for calibrating Raman spectrometers and microscopes according to the spectrum shape (i. e. relative spectral sensitivity).The purpose of the research was to develop prototype measures designed to calibrate Raman spectrometers and microscopes on a scale of relative intensities provided with metrological traceability to the SI base units.Prototype measures were made from inorganic glasses based on an oxide matrix, each of the glasses was activated with metal ions selected to excite a broad fluorescence line with radiation at a given wavelength: 532 nm (manganese ions), 633 nm (bismuth ions) and 785 nm (chromium ions). Metrological characteristics were established for prototype measures, where the certified characteristic is the relative intensity of the reproduced fluorescence radiation. The maximum expanded measurement uncertainty of the relative fluorescence intensity at a coverage factor k = 2 was determined, which is 9.4 %, 5.2 % and 2.8 % for prototype measures designed to reproduce the relative fluorescence intensity when excited at wavelengths of 532 nm, 633 nm and 785 nm, respectively.Certification of measures performed on the laser Raman confocal microscope Confotec NR500, which is part of the GET 196-2015 standard, allows establishing metrological traceability through the scale of relative intensities of the GET 8 6-2017 microscope, providing traceability to SI units of the “(light) energy flux” value. Thus, it is possible to find the spectral correction function for determining the Raman spectra traceable to the State Primary Standard GET 196-2015 for calibrated devices using certified measures.The practical significance of the results of the research makes it possible to expand the possibility of establishing and monitoring the stability of the calibration characteristics of microscopes and Raman spectrometers, namely, it allows calibration on a scale of relative intensities.

Publisher

Ural Research Institute of Metrology (UNIIM)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3