SIBS triblock copolymers in cardiac surgery: in vitro and in vivo studies in comparison with ePTFE

Author:

Rezvova M. A.1,Ovcharenko E. A.1,Nikishev P. A.2,Kostyuk S. V.3,Antonova L. V.1,Akent’eva T. N.1,Glushkova T. V.1,Velikanova Y. G.1,Shishkova D. K.1,Krivkina E. O.1,Klyshnikov K. Yu.1,Kudryavtseva Yu. A.1,Barbarash L. S.1

Affiliation:

1. Research Institute for Complex Issues of Cardiovascular Diseases

2. Research Institute for Physical Chemical Problems; Faculty of Chemistry, Belarusian State University

3. Research Institute for Physical Chemical Problems; Faculty of Chemistry, Belarusian State University; Institute of Regenerative Medicine, Sechenov First Moscow State Medical University

Abstract

Implantation of polymeric heart valves can solve the problems of existing valve substitutes – mechanical and biological. Objective: to comprehensively assess the hemocompatibility of styrene-isobutylene-styrene (SIBS) triblock copolymer, synthesized by controlled cationic polymerization in comparison with expanded polytetrafluoroethylene (ePTFE) used in clinical practice. Materials and methods. SIBS-based films were made by polymer solution casting method; in vitro biocompatibility assessment was performed using cell cultures, determining cell viability, cell adhesion and proliferation; tendency of materials to calcify was determined through in vitro accelerated calcification; in vivo biocompatibility assessment was performed by subcutaneous implantation of rat samples; hemocompatibility was determined ex vivo by assessing the degree of hemolysis, aggregation, and platelet adhesion. Results. The molecular weight of synthesized polymer was 33,000 g/mol with a polydispersity index of 1.3. When studying cell adhesion, no significant differences (p = 0.20) between the properties of the SIBS polymer (588 cells/mm2) and the properties of culture plastics (732 cells/mm2) were discovered. Cell adhesion for the ePTFE material was 212 cells/mm2. Percentage of dead cells on SIBS and ePTFE samples was 4.40 and 4.72% (p = 0.93), respectively, for culture plastic – 1.16% (p < 0.05). Cell proliferation on the ePTFE surface (0.10%) was significantly lower (p < 0.05) than for the same parameters for SIBS and culture plastic (62.04 and 44.00%). Implantation results (60 days) showed the formation of fibrous capsules with average thicknesses of 42 μm (ePTFE) and 58 μm (SIBS). Calcium content in the explanted samples was 0.39 mg/g (SIBS), 1.25 mg/g (ePTFE) and 93.79 mg/g (GA-xenopericardium) (p < 0.05). Hemolysis level of red blood cells after contact with SIBS was 0.35%, ePTFE – 0.40%, which is below positive control (p < 0.05). Maximum platelet aggregation of intact platelet-rich blood plasma was 8.60%, in contact with SIBS polymer – 18.11%, with ePTFE – 22.74%. Conclusion. In terms of hemocompatibility properties, the investigated SIBS polymer is not inferior to ePTFE and can be used as a basis for development of polymeric prosthetic heart valves.

Publisher

V.I. Shimakov Federal Research Center of Transplantology and Artificial Organs

Subject

Transplantation,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3