Akıllı Üretim Sistemlerinde Kontrol ve Otomasyon Uygulamaları İçin Esnek Üretim Sistemi Deney Seti Geliştirilmesi

Author:

ŞAHİN Yakup YasinORCID,TASKIN Sezai1ORCID,KARTAL FarukORCID

Affiliation:

1. MANİSA CELÂL BAYAR ÜNİVERSİTESİ

Abstract

Akıllı üretim sistemlerinin geliştirilmesi sanayide yeni bir yaklaşımı ve değişimi başlatmıştır. Günümüzde, teknolojiyi kullanarak katma değer üretebilen ve bu teknolojilerin gerektirdiği teknik becerilere sahip çözümler sunabilen çalışanlar daha avantajlı hale gelmektedir. Bu nedenle mesleki teknik eğitimin niteliğini artırmaya yönelik çalışmaların odağında bireylerin yeni teknolojilere kolayca uyum sağlamalarını ve öğrenmeyi öğrenmelerini sağlayan modeller geliştirmenin önemi her geçen gün daha da artmaktadır. Bu çalışmada sunulan esnek üretim sistemi deney seti, ürün esnekliği ve istasyon sıralama esnekliği gibi yapılanma imkanı sunan bir fabrika otomasyon seti olarak tasarlanmıştır. Deney seti; endüstriyel otomasyon ve haberleşme, veri işleme, hareket kontrol sistemleri, basınç, boyut vb. fiziksel değişkenlerin ölçülmesi ve analizi, kestirimci bakım, durum izleme, görüntü işleme vb. birçok teknik ve güncel konuyu kapsayacak özelliklere sahip olarak geliştirilmiştir.

Funder

KOSGEB Manisa İl Müdürlüğü

Publisher

Journal of Materials and Mechatronics: A

Reference14 articles.

1. Bildstein A., Seidelmann, J., Endüstri 4.0 Üretimine Geçiş, Automatisierung und logistik, Springer Vieweg, Wiesbaden, 2014.

2. Cronin, C., Awasthi, A., Conway, A., O’Riordan, D., Walsh, J., Design and development of a material handling system for an autonomous ıntelligent vehicle for flexible manufacturing, Procedia Manufacturing, 51, 493-500, 2020.

3. Erdil A., Manufacturing-Production systems and their ımportance:evaluation of flexible manufacturing systems, European Journal of Science And Technology, 29, 331-342, 2021.

4. Gönen S., Çelik M., Esnek üretim sistemleri uygulayan işletmelerde üretim maliyetlerinin değerlendirilmesi, Dergipark, 1(4), 133-143, 2004.

5. Jin X., Wu X., Yu L., Intelligent manufacturing system based on big data and deep learning. Engineering Science, 23(6), 60-68, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3