Improving the educational experience on Youtube: a machine learning approach to classifying and recommending educational videos

Author:

Carvalho Henrique Carlos Fonte BoaORCID,Dorça Fabiano AzevedoORCID,Pitangui Cristiano GrijóORCID,Andrade Alessandro VivasORCID,Assis Luciana Pereira deORCID,Trindade Eduardo Augusto CostaORCID

Abstract

The fast development of technology has revolutionized social interaction and enabled easy access to a vast amount of information. However, it is increasingly challenging to find relevant educational materials within the large volume of available data. This challenge has led to a significant waste of time for teachers and students in searching for high-quality educational resources. In this sense, the present work focuses on classifying educational videos on YouTube using Machine Learning models. The study extends a previous work that analyzed YouTube videos and proposed a methodology for classifying them using their comments. The current study expands the dataset used in the previous work and employs Machine Learning algorithms such as Random Forest and Neural Networks, along with hyperparameter tuning techniques like Grid Search. Experimental results showed that a Convolutional Neural Network was able to differentiate educational videos from non-educational ones with an accuracy rate of 95,71%. This study highlights the potential of Convolutional Neural Networks in classifying educational content on YouTube, contributing to advances in the field of Machine Learning for educational purposes.

Publisher

South Florida Publishing LLC

Reference28 articles.

1. Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., & Vijayanarasimhan, S. (2016). YouTube-8M: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675.

2. Afonso, A. R., & Duque, C. G. (2019). Análise de sentimentos em comentários de vídeos do YouTube utilizando aprendizagem de máquinas supervisionada. Ciência da Informação, 48(3).

3. Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919. https://doi.org/10.48550/arXiv.1707.02919

4. Amanda, R., & Negara, E. S. (2020). Analysis and implementation machine learning for YouTube data classification by comparing the performance of classification algorithms. Jurnal Online Informatika, 5(1), 61–72.

5. Berrar, D. (2019). Cross-validation. In S. Ranganathan, M. Gribskov, K. Nakai, & C. Schönbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Academic Press. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3