Statistical learning for maintenance optimization: modeling the hazard function with variable recovery factors

Author:

De Souza Fábio Lucas CostaORCID,Da Silva Allan JonathanORCID

Abstract

Abstract: This study aims to utilize advanced statistical methods in equipment maintenance within the machining and casting processes of an industrial company, focusing on cost optimization. Employing a methodology that combines literature review, mathematical formulation, and statistical treatment of historical data from preventive and corrective maintenance, the study stands out for the use of maximum likelihood estimation to determine not only the model parameters but also the recovery factor used during preventive maintenance. It also calculates the optimal maintenance time to minimize the total cost. This work not only underscores the importance of a data-driven maintenance approach, balancing reliability and cost to achieve effective optimization but also signals the need for future studies, especially in simulations to further enhance preventive maintenance scheduling, encompassing all aspects of the production process.

Publisher

South Florida Publishing LLC

Reference15 articles.

1. Associação Brasileira de Manutenção – ABRAMAN. (2011). A situação da manutenção no Brasil. In Anais do 26º Congresso Brasileiro de Manutenção. Curitiba: Abraman.

2. BLOOM, N. B. Reliability Centered Maintenance: implementation made simple. New York: McGraw-Hill, 2006.

3. Elsayed, Elsayed A. 2021. Reliability engineering. 3rd.Wiley series in systems engineering and management.Wiley.

4. FARRERO, J. C.; TARRÉS, L. G.; LOSILLA, C. B. Optimization of replacement stocks using a maintenance programme derived from reliability studies of production systems. Industrial Management & Data Systems, v. 102, n. 4, p. 188-196, 2002.

5. FOGLIATTO, Flávio; RIBEIRO, José. Confiabilidade e Manutenção Industrial. Rio de Janeiro: Elsevier: ABEPRO, 2011.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3