Non-linear regression models in the management of accumulated production of parchment coffee in Peru

Author:

Fernández Diana Del Rocío RebazaORCID,Gonzaga Natiele de AlmeidaORCID,Cirillo Marcelo ÂngeloORCID,Muniz Joel AugustoORCID

Abstract

Parchment coffee results from washing the coffee cherry, and its production has achieved a significant increase in the coffee-growing regions of Peru. Knowing the production pattern of this grain is essential to help coffee producers make decisions in the economic and social sector. As growth curves generally have sigmoidal behavior, which is well fit by non-linear models, this study aimed to model the cumulative production pattern of parchment coffee as a function of time (in months) in the year 2022, comparing the fit of the non-linear Logistic, Gompertz and von Bertalanffy models. The cumulative national production, and production of the departments of Huánuco and San Martín, in Peru, were analyzed. Data used to fit the models were obtained from the Ministry of Development and Irrigation (MIDAGRI) of Peru. To check the assumptions of normality, homoscedasticity, and independence of residuals, the Shapiro-Wilk, Breusch-Pagan, and Durbin-Watson tests were used, respectively. The model parameters were estimated using the least squares method using the Gauss-Newton algorithm in the R software. The goodness-of-fit of the models was tested using goodness-of-fit measures such as Coefficient of Determination (R2), Residual Standard Deviation (RSD), Akaike Information Criterion (AIC), and nonlinearity measures. Based on the models’ goodness-of-fit measures, the Gompertz model with a first-order autoregressive error term (AR1) fit best to national production data, and the Logistic model was the most suitable for describing the production of the departments of Huánuco, and San Martín.

Publisher

South Florida Publishing LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3