Abstract
Sentiment Analysis typically refers to using natural language processing, text analysis, and computational linguistics to extract effect and emotion-based information from text data. Our work explores how we can effectively use deep neural networks in transfer learning and joint dual input learning settings to effectively classify sentiments and detect hate speech in Hindi and Bengali data. We start by training Word2Vec word embeddings for Hindi HASOC dataset and Bengali hate speech [24] and then train LSTM and subsequently, employ parameter sharing based transfer learning to Bengali sentiment classifiers by reusing and fine-tuning the trained weights of Hindi classifiers with both classifiers being used as the baseline in our study. Finally, we use BiLSTM with self-attention in a joint dual input learning setting where we train a single neural network on the Hindi and Bengali datasets simultaneously using their respective embeddings.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献