ANALYTICAL STUDY OF THE MECHANISM OF DROPLET DEFORMATION AND BREAKUP IN SHEAR FLOWS

Author:

Ivanitsky G.K.,Tselen B.Ya.,Radchenko N.L.,Gozhenko L.P.

Abstract

The problem of drop deformation and breakup in shear flow represents academic and practical interest and has attracted close attention over the intervening decades. Drop breakup is important for a wide range of engineering and biomedical applications including production and processing of emulsions, aerosols, etc. Although drop breakup operations are widely used in various industries, however, till quite presently there is no unequivocal treatment of the physical mechanism, which causes the fragmentation of dispersions in shear flows. In this paper the principles of constructing a mathematical model, which predicts the evolution of initially spherical droplet in shear flows of viscous liquid over a wide range of flow regimes as well physical parameters of both liquid phases, are considered. A mathematical model is presented that describes the deformation of a single drop suspended in another immiscible liquid under the combined action of three forces, namely, hydrodynamic force, capillary force and dissipative viscous force. The influence of each of these forces on the process of droplet deformation is discussed in the paper. The focus of the study is to more deeply analyze the dynamics of droplet deformation in shear flows and the transitional effects associated with current droplet shapes. Particular attention is paid to the analysis of critical conditions for the onset of irreversible deformation of droplets, which leads to their destruction. The deformed droplet is assumed to be in the form of prolate ellipsoid of revolution. The drop deformation is regarded as motion of the centers mass of the half-drops, symmetrical with respect to the drop center. The results of numerical calculations for droplet deformation in shear flows in comparison with experimental data of other authors are presented. A simple criterion for destruction of droplets in shear flows has been obtained. The results of the analysis confirm the reliability of the model and the competency of the assumption made. The model is able to predict the nature of droplet deformation and the conditions for their destruction in shear flows with known operating parameters with a greater degree of accuracy than the existing empirical relationships.

Publisher

Institute of Engineering Thermophysics of NAS of Ukraine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3